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Abstract. This paper describes a feature selection method based on the quadratic
mutual information. We describe the needed formulation to estimate the mutual
information from the data. This paper is motivated for the high time cost of the
training process using the classical boosting algorithms. This method allows to
reuse part of the training time used in the first training process to speed up posterior
training to update the detectors in front of samples changes.
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1. Introduction

Feature selection methods are techniques to select a reduced subset of features from a
normally very large set of features in order to solve a classification problem. This pro-
cedure can reduce not only the cost of classification by reducing the number of features,
but in some cases it can also provide a better classification accuracy[1].One of the most
popular algorithms used on feature selection for classification is the Adaboost, a boost-
ing algorithm introduced by Freund & Schapire in [2]. Boosting is a powerful learning
concept that allows combining the performance of many simple classification functions
to produce a strong classifier.
The weak classification functions, named weak classifiers, in our case are simply features
with a threshold. The Adaboost algorithm associates a weight to each sample depending
on the difficulty to classify it. In each iteration, the algorithm selects the weak classifier
ht which minimizes the classification error over the samples weights distribution. Then
it updates the weights distribution and calculates a weight for the added weak classifier.
After T rounds of boosting, the decision of the ensemble is defined as:

H(x) =

{
1

∑T
t=1 αtht(x) ≥ θ

0 otherwise
(1)

where the αt are the standard Adaboost ensemble weights and θ is the threshold of the
ensemble.



Although this approach can be applied to a wide variety of fields, we will use it in the
object detection problem, to be exact in the rare event detection. In [3], Viola & Jones
presents a boosted cascade of simple features for face detection, the canonical example
of rare event detection problem. They use a simple set of rectangular features, and a fast
method to calculate them based on the concept of integral image. The schema proposed
by Viola & Jones is especially useful in rare event detection, where we need to discard
thousands or millions of images and recognize just a few. In [4] Lienhart and Maydt
extends the features set used by Viola and Jones, introducing new types of features and
45o rotated features. To evaluate this last type of features they introduce the 45o rotated
integral image.
Nowadays, this combination of extended Haar-features and a boosted cascade is widely
used in rare event detection. The main problem of this method is the training time. With a
training window size of 30×30 we can have more than 700.000 features, and training sets
with thousands of images. In our tests applied to traffic signs[5], a set of 1000 positive
examples and a cascade goal false alarm ratio of 0.00001 spends a week to train. After
the training stage, the cascade of 17 stages is formed by only 323 simple classifiers.
We think that this difference between the number of available and selected features is not
a coincidence, and it means that most part of the features don’t help on the classification
problem. In this direction we bet for the mutual information between features and classes
to select a priori a small set of features to solve the classification problem reducing the
training time.

2. Mutual Information

We basically will follow the work of Torkkola in [6]. In this work he proposes a trans-
formation instead of a features selection, but makes a very detailed study of all the prob-
lems and the methods to calculate the mutual information. We will assume that each fea-
ture X is an univariate random variable and C a discrete-valued random variable repre-
senting the class labels. In following equations, uppercase P will denote a probability
and lowercase p a probability density. Given a sample, the entropy or uncertainty of the
class label, making use of Shannon’s definition, can be expressed in terms of class prior
probabilities.

H(C) = −
∑

c

P (c)log(P (c)) (2)

Once we have observed a feature value x, the uncertainty of the class label is expressed
as:

H(C|X) = −
∫

x

p(x)

(∑
c

p(c|x)log(p(c|x))

)
dx (3)

The amount by which the class uncertainty is reduced, after having observed the feature
vector x, is the mutual information, which can be written as:

I(C, X) =
∑

c

∫

x

p(c, x)log
p(c, x)

P (c)p(x)
dx (4)



The practical estimation of the mutual information from data based on expression (4)
is difficult because the good estimation of the probability density function of a contin-
uous variable is not easy. To solve this problem, in the following sections we describe
a method to calculate a mutual information measure based on a reformulation of the
entropy concept and a density estimator method. The result is a formulation of mutual
information in terms of discrete sums.

3. Parzen density estimator

The Parzen window method [7] is a non-parametric method to estimate the probability
density function. This method involves placing a kernel function on top of each sample
and evaluate the density as a sum of kernels. The Gaussian kernel is defined as:

G(µ, σ2) =
1

σ
√

2π
e
−µ2

2σ2 (5)

Now, for two kernels, we can write:
∫

x

G(x− µ1, σ
2
1)G(x− µ2, σ

2
2) = G(µ1 − µ2, σ

2
1 + σ2

2) (6)

Thus, the convolution of two Gaussians centered at µ1 and µ2 is a Gaussian centered at
µ1 − µ2, with a variance equal to the sum of variances. Assume now that the density of
X is estimated as a sum of Gaussians centered at a sample xi. This is the Parzen density
estimation:

p(x) =
1
N

N∑

i=1

G(x− xi, σ
2) (7)

where N is the number of samples.

4. Renyi’s Entropy

Renyi’s entropy is a more general formulation than Shannon entropy. In the general the-
ory of means [8], the mean of the real numbers x1, ..., xN with positive weighting (not
necessarily probabilities) p1, ..., pN has the form:

x̄ = ϕ−1

(
N∑

k=1

pkϕ(xk)

)
(8)

where ϕ(x) is a Kolmogorov-Nagumo function, which is an arbitrary continuous and
strictly monotonic function defined on the real numbers. In general, an entropy measure
H obeys the relation:

H = ϕ−1

(
N∑

k=1

pkϕ(I(pk))

)
(9)



where I(pk) = −log(pk) is Hartley’s information measure [9]. In order to be an infor-
mation measure, ϕ(.) can not be arbitrary since information is "additive". To meet addi-
tivity condition, ϕ(.) can be either ϕ(x) = x or ϕ(x) = 2(1−α)x. If ϕ(x) = x is selected,
(9) will become Shannon’s entropy. For ϕ(x) = 2(1−α)x Renyi’s entropy of order α is
obtained [10], which we will denote by HRα

HRα
=

1
1− α

log

(
N∑

k=1

pα
k

)
α > 0, α 6= 1 (10)

In fact, Renyi’s entropy of order α will compute interactions among α-tuples of samples,
providing even more information about the complex structure of the data set[13]. When
α = 2, (10) is called quadratic entropy due to the quadratic form on the probability. For
a discrete variable C and a continuous variable X , the quadratic Renyi entropy HR2 is
defined as [8]:

HR2(C) = −log
∑

c

p(c)2 HR2(X) = −log

∫

x

p(x)2dx (11)

Note that Renyi’s quadratic entropy involves the use of the square of the PDF. An im-
portant observation is that this alternate definition of entropy is equivalent to Shannon’s
entropy for the goal of entropy maximization [11]. Then, it follows that the quadratic
Renyi’s entropy in (11) equals [6]

HR2(X) = −log
∫

x
p(x)2dx

= −log 1
N2

∫
x

(∑N
k=1

∑N
j=1 G(x− xk, σ2)G(x− xj , σ

2)
)

dx

= −log 1
N2

∑N
k=1

∑N
j=1 G(xk − xj , 2σ2)

(12)

Thus, Renyi quadratic entropy can be estimated as a sum of local interactions, as defined
by the kernel, over all pairs of samples.

5. Information potentials

Assume that we have Jp samples for each class cp. Then, the class prior probabilities are
P (cp) = Jp/N , with

∑Nc

p=1 Jp = N . Now we will use different notations for the sam-
ples of data X . A sample is written with a single subscript xi when its class is irrelevant.
If the class is relevant, we will write xpj , where p is the class index and j the within-class
index. Nc is the number of classes.
The density of each class cp, as a Parzen estimate using the Gaussian kernel of width σ,
is written as:

p(x|cp) =
1
Jp

Jp∑

j=1

G(x− xpj , σ
2) (13)

Using the definition of joint density p(c, x) = p(x|c)P (c), we have



p(cp, x) =
1
N

Jp∑

j=1

G(x− xpj , σ
2), p = 1, ..., Nc (14)

Finally, using that the density of all data is p(x) =
∑

c p(c, x), we can write

p(x) =
1
N

Nc∑
p=1

Jp∑

j=1

G(x− xpj , σ
2) =

1
N

N∑

i=1

G(x− xi, σ
2) (15)

Using the quadratic entropy in the calculus of mutual information, we can speak of
quadratic mutual information, denoted by IT . With continuous-valued X and discrete C,
the definition of the quadratic mutual information can be written as [13]:

IT (C, X) = VIN + VALL − 2VBTW

where





VIN ≡ ∑
c

∫
x

p(c, x)2dx
VALL ≡

∑
c

∫
x

P (c)2p(x)2dx
VBTW ≡ ∑

c

∫
x

p(c, x)P (c)p(x)dx

(16)

Using a set of samples {xi}, combining the equations (14),(15) and (16), and making
use of (6) and (12), we get:

VIN ({ci, xi}) =
∑

c

∫

x

p(c, x)2dx =
1

N2

Nc∑
p=1

Jp∑

k=1

Jp∑

l=1

G(xpk − xpl, 2σ2) (17)

VALL({ci, xi}) =
∑

c

∫

x

P (c)2p(x)2dx =
1

N2

(
Nc∑
p=1

(
Jp

N

)2
)

N∑

k=1

N∑

l=1

G(xk−xl, 2σ2)

(18)

VBTW ({ci, xi}) =
∑

c

∫

x

p(c, x)P (c)p(x)dx =
1

N2

Nc∑
p=1

Jp

N

Jp∑

j=1

N∑

k=1

G(xpj − xk, 2σ2)

(19)
These kinds of quantities can be called "information potentials" in analogy to physical
particles [13]. In the next section we present a method to calculate the value of the σ
used in these equations.

6. Sigma estimation

The correct selection of the sigma value has a capital importance for the correctness
of the final mutual information values. This parameter depends on the data, and can be
viewed as the window width in the Parzen method. In Fig. 1 is showed the effect of the
variation of this value in the estimated probability density function. In [12], Silveman
develops a set of equations in order to select a correct value in the case of Gaussian
kernel, minimizing the mean integrated square error. The resultant equation is:



Figure 1. From [12], Kernel estimation showing individual kernels. Windows widths: (a) 0.2;(b)0.8.

σ = 0.9An−
1
5 (20)

where A = min(standard deviation, interquartile range/1.34) and n is the number
of samples used for the estimation.

7. Results

First we briefly presents some statistics over the detection step to justify the neces-
sity to use some methods to reuse the time spent training the system. All this results
are extracted from a traffic sign recognition system based on Adaboost and Haar-like
features[5]. We divided the traffic signs in 5 classes (yield, danger, prohibition, command
and kilometric points). For each class we trained a different detector, which is a cascade
of detectors trained using Adaboost. In table 1 we show the mean number of features
per stage, and one can see that is a number really smaller than the original 700.000 fea-
tures of the features set. The results obtained when we apply our detectors to the test are
quite low due to the difference in the orientation, illumination and/or kind of the signs.
We want to add the failed signs to the train set to improve the detectors. Now it means
to spend a week for each detector, and here is where we want to introduce the feature
selection methods, that can reduce drastically this time. To measure the influence of the

Table 1. Training set size and performance of each detector after analyzing 9510 frames of 1020× 1024. All
the detectors are trained on a size of 30×30 except the kilometric points trained at 24×24. HR is the obtained
hit ratio and FA the false alarm ratio.

Sign type # Training Samples Mean features/stage # Signs HR FA

Yield 425 9.176 179 93.08% 1060/179=5.92
Danger 545 12.125 385 89.59% 854/385=2.21
Prohibition 993 19 481 83.36% 371/481=0.77
Command 356 11.667 115 70.88% 1382/115=12.01
Km points 218 8 148 76.99% 2928/148=19.78

mutual information to the boosting process, we compare the convergence speed of the
Adaboost selecting small sets of features. The following tests are programmed in Matlab,
using a sampled features set of 8000 rectangular features and a set of 400 samples (50%
positive and 50% negative). We use the Discrete Adaboost algorithm, fixing the number
of iterations at 100.
Using all the features the training process spend more than 4 hours and half, and it con-
verge at iteration 13. If we select only the 100 features with the higher mutual infor-
mation, the training time is reduced to only 5 minutes, and it converges at iteration 39.



Using only the 100 worst features, and maintaining the training time, the convergence of
the Adaboost is delayed to the iteration 83 (see Fig. 2). It is important to emphasis that at
the end of the training process, in all cases the detector obtain the same detection rates.
Finally, we compare the effect of the number of features over the convergence speed.
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Figure 2. Convergence of the Adaboost depending on the features set. First using all features, then only the
100 with the higher MI and finally the 100 with lower MI.

Using the same training set as before, we train a classifier using the N features with bet-
ter mutual information. The results are in Fig. 3. We can see that from a certain number
of features, to add more features has a moderate effect over the convergence speed. Our
interpretation is that from a certain number of features, the new features do not apport
important information for the classification process.

8. Conclusions and future work

The convergence speed shows that the mutual information between features and class
labels have a direct relationship with the convergence speed of the Adaboost.
To calculate the mutual information between each feature and the class labels is too
expensive in time to be calculated each time. The main idea is use the first samples set
to calculate the mutual information and select a small subset of features. Then each time
that we add new samples to our training set, we will repeat the training process only with
this selected features, and it will reduce drastically the time used to maintain all detectors
up to date.
In this first approach, we only select the features with higher mutual information, but is
logical to use the mutual information to select also the features with the minimal mutual
information with the other features, to eliminate the redundant features.
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Figure 3. Convergence of the Adaboost depending on the number of features. Features are sorted by their
mutual information value and the features set are the N features with the higher MI.
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